Computer Networks 54 (2010) 28-40

Contents lists available at ScienceDirect

mpgfer
Computer Networks r"“iqfw;;rks

journal homepage: www.elsevier.com/locate/comnet

An efficient dynamic-identity based signature scheme
for secure network coding

Yixin Jiang *P, Haojin Zhu?, Minghui Shi?, Xuemin (Sherman) Shen®*, Chuang Lin®

2 Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
b Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

ARTICLE INFO

ABSTRACT

Article history:

Received 3 February 2009

Received in revised form 15 May 2009
Accepted 7 August 2009

Available online 13 August 2009
Responsible Editor: W. Wang

Keywords:

Network coding
Identity-based cryptography
Signature

Pollution attacks

The network coding based applications are vulnerable to possible malicious pollution
attacks. Signature schemes have been well-recognized as the most effective approach to
address this security issue. However, existing homomorphic signature schemes for net-
work coding either incur high transmission/computation overhead, or are vulnerable to
random forgery attacks. In this paper, we propose a novel dynamic-identity based signature
scheme for network coding by signing linear vector subspaces. The scheme can rapidly
detect/drop the packets that are generated from pollution attacks, and efficiently thwart
random forgery attack. By employing fast packet-based and generation-based batch verifi-
cation approaches, a forwarding node can verify multiple received packets synchronously
with dramatically reduced total verification cost. In addition, the proposed scheme pro-
vides one-way identity authentication without requiring any extra secure channels or sep-
arate certificates, so that the transmission cost can be significantly reduced. Simulation

results demonstrate the practicality and efficiency of the proposed schemes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Network coding, as an efficient means of information
dissemination, is a promising approach in many practical
network applications, such as traditional multicast or
broadcast networks [1], wireless sensor networks [2,3],
and peer-to-peer content distribution networks [4-7]. Net-
work coding was first introduced in [8] as an alternative to
the traditional routing networks, and it has been shown
that random linear coding can achieve the optimal
throughput for multicast [1,9] and even unicast transmis-
sions [10,11].

Unlike the traditional forwarding approach which
requires duplicating every input message, network coding
allows each intermediate node to encode packets en-route.

* Corresponding author. Tel.: +1 519 888 4567 32691; fax: +1 519 746
3077.
E-mail addresses: yixin@bbcr.uwaterloo.ca (Y. Jiang), h9zhu@bbcr.
uwaterloo.ca (H. Zhu), mshi@bbcr.uwaterloo.ca (M. Shi), xshen@bbcr.
uwaterloo.ca (X. (Sherman) Shen), clin@csnet1.cs.tsinghua.edu.cn (C. Lin).

1389-1286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.08.006

Therefore, each output message sent to the downlink can
be linear combination of input messages received from
the uplinks, as illustrated in Fig. 1 [16]. Generally, network
coding system consists of the transmission, encoding, and
re-encoding of messages at intermediate nodes, such that
the encoded messages can be decoded at their final
destinations.

A primary benefit of network coding is that it can im-
prove throughput and minimize the transmission delay
of a network. Another compelling benefit is its robustness
and adaptability. Practical network coding techniques,
such as random linear coding, packet tagging, and buffer-
ing, allow the encoding and decoding to proceed in a dis-
tributed manner, even if asynchronous packets arrive and
depart in arbitrarily varying rate, delay, and loss. Thus, net-
work coding is well suited for dynamic network scenarios,
where nodes only have partial information about the glo-
bal network topology. In addition, network coding can
minimize the amount of energy required per packet multi-
cast in wireless networks.

http://dx.doi.org/10.1016/j.comnet.2009.08.006
mailto:yixin@bbcr.uwaterloo.ca
mailto:h9zhu@bbcr.
mailto:mshi@bbcr.uwaterloo.ca
mailto:xshen@bbcr.
mailto:clin@csnet1.cs.tsinghua.edu.cn
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

Y. Jiang et al. / Computer Networks 54 (2010) 28-40 29

B

[

Q.
Q

]

Y

Asynchtonous
reception

O
B
;]

edge

i
.

E
l
l

Random |4 , Transmission
combination |opportunity :
{Generate packet
|
|
l I
edge| |

i

Asynchronous
transmission

node

Fig. 1. Coding at network node.

However, network coding may face potential security
threats due to open multi-hop communications and the
packet encoding at intermediate forwarders. Since network
coding involves mixing of packet inside the network, sev-
eral primary types of attacks, pollution attacks, random forg-
ery attacks [38], and entropy attacks [5], are particularly
relevant to network coding. The pollution attack is origi-
nated from any malicious behaviors of un-trusted forward-
ers or adversaries, such as injecting polluted information,
modifying and replaying the disseminated messages,
which could be fatal to the whole networks. Although this
may also occur in a traditional network system without
network coding, its effect is far more serious with network
coding. If a junk message is mixed by a forwarder, the out-
put messages of the forwarder will be contaminated. Such
polluted messages should be detected and filtered as early
as possible, since they may spread to all downstream
nodes by re-encoding junk messages. The random forgery
attack is related to homomorphic signature function itself.
Jognson et al. [38] conclude that for an additive homomor-
phic signature function defined on the lattice L = (z/mz)",
if an adversary can derive signature Sig(x;),...,Sig(xq),
where X, ..., X, are a basis for L, then it can launch success-
ful random forgery attacks to the additive homomorphic
signature function. The entropy attack can be considered
as a special replay attack, where an adversary may use
“stale” encoded packet vectors to forge non-innovative
packets that are trivial linear combinations of existing
packets at the forwarders. Although entropy attack does
not destroy the linear algebraic constraint conditions be-
tween the original packet and the appended encoding vec-
tor, it reduces the decoding opportunities at sinks and the
overall throughput rate. How to thwart entropy attacks ex-
ceeds the scope of this paper, which we have explored at
length in [36].

For secure network coding, it is prerequisite to achieve
efficient message integrity and validity. The non-
cryptography based schemes [14,15] can only detect or
filter out polluted messages at the sinks, but not at the for-
warders. A well-recognized cryptography-based solution is
to sign each message with a signature. However, the tradi-
tional hash function based signature schemes may be

unsuitable for network coding, since the original source
signatures can be destroyed by the subsequent encoding
process, which is performed at each forwarder. The basic
idea in existing cryptography-based schemes is to detect
each packet before it gets mixed into the buffer, including
a homomorphic hash scheme [5], a homomorphic signa-
ture scheme [12], and a secure random checksum scheme
[5]. These solutions either require an extra secure channel
[5], incur high computation overhead due to not support-
ing batch verification [12], suffer from relatively high extra
transmission overhead [5,39], endure weak scalability
[12,39], or are vulnerable to the random forgery attack
[12,13], by which an adversary may arbitrarily forge signa-
tures for a given message if sufficient signatures of “stale”
messages are collected [38]. Recently, Yu et al. [13] pro-
pose an efficient homomorphic signature scheme based
on the RSA signature scheme, with which the forwarders
can achieve efficient verification at the expense of in-
creased transmission overhead, since the size of a RSA sig-
nature is typically very large in the order of hundreds of
bytes. Zhao et al. [39] also present a novel signature
scheme for network coding by authenticating the vector
sub-space. The significant drawback in this scheme is that
the size of both the public signature information and pub-
lic keys is at least the square root of the file size. Moreover,
the scheme is not efficient for distributing multiple files
with the same public key, which significantly impairs the
system scalability. Finally, to calculate the public signature
information, the scheme requires the source to buffer the
entire file in advance. Therefore the scheme is not suitable
for streaming live data, which are generated on-the-fly.
These aforementioned deficiencies motivate us to explore
a more efficient and scalable scheme for securing network
coding.

In this paper, we propose an efficient dynamic-identity
based signature scheme for secure network coding, which
features the following notable properties: (1) Efficiency:
The proposed signature scheme can support fast identity-
based batch verification, and rapid signature generation
for the output packets. By employing two optimized verifi-
cation techniques, packet-based and generation-based
batch verification methods, a node can quickly verify mul-

30 Y. Jiang et al. / Computer Networks 54 (2010) 28-40

tiple received packets in batch such that the total verifica-
tion cost can be dramatically reduced. Thus the proposed
scheme effectively eliminates the performance bottleneck
due to the greatly reduced computational overhead at for-
warders. Moreover, with identity-based signature, both
certificate management cost and the transmission over-
head can be significantly reduced; (2) Security: To address
the security and robustness of our scheme, a Multi-level
Binary Authentication Tree (M-BAT) approach is proposed
for detecting pollution attacks. In addition, with the one-
way dynamic-identity based signature function, the scheme
can efficiently thwart random forgery attack, which exists
in most of reported homomorphic signature schemes for
network coding. The proposed scheme also does not need
any extra secure channel, and provides source authentica-
tion via one-way identity hash-chain. (3) Scalability: In
the proposed scheme, the signature keys can be updated
with one-way pseudo-identity refreshing in a natural
way, while the public keys keep invariant. Therefore, the
proposed scheme is more efficient for transmitting live
data or distributing multiple files with the same public
keys. Such features effectively improve deployment scala-
bility of the proposed scheme.

The remainder of the paper is organized as follows. In
Section 2, preliminaries related to the proposed research
are given, including the network coding model, adversary
model, and the pairing concept. In Section 3, the pro-
posed signature scheme is introduced in details. In Sec-
tions 4 and 5, the security analysis and performance
evaluation are presented, respectively. In Section 6, the
related works are discussed, followed by the conclusions
in Section 7.

2. Preliminaries

In this section, we briefly present the practical network
coding and the adversary model, followed by the introduc-
tion of bilinear pairing, which is the foundation of the pro-
posed scheme.

2.1. Network coding model

The principle behind network coding is to allow inter-
mediate nodes to re-encode the incoming packets. In prac-
tical network coding [16,35], the information source
outputs a continuous stream of packets, which can be
grouped into blocks with n source packets per block.
Let all the code packets in the network related to the kth
source block be denoted by generation k. To keep tracking
of packets in same generation, each packet is tagged with
its generation number k.

Fig. 1 illustrates a typical network node with three
incoming links and one outgoing link. Packets with gener-
ation number (shown as shade) arrive sequentially through
each link and are put into a buffer sorted by generation,
where the packets with the “active generation” at the head
of the queue. Once there is a transmission opportunity for
an outgoing link, an outgoing packet is formed by taking a
random linear combination of packets with the active
generation.

In the following, we introduce the general algebraic
model of network coding. Let an acyclic network (V,E,c)
be denoted by a set of nodes (or vertices) V, a set of direc-
ted links (or edges) E with unit capacity edges, i.e., c(e) = 1
for all e € E, which means that each edge can carry one
symbol per unit of time. Assume that each symbol is an
element of a finite field Z,, where ¢ is a primer.

In the proposed scheme, we consider a single source
s eV and a set of sinks T C V(or a single node t € V). Let
n = MinCut(s,T) be the multicast capacity. Assume that s
attempts to send some information blocks to the sinks in
TCV. For one block with a given generation number, it
can be divided into n packets {B},B5,... B} per block.
Similar to the setting in [5,12], each packet B] (i=
1,...,n) is further divided into m symbols, which can be
denoted as a vector such as B} = [b{,,b;,,...,b},], where
bfj € Z4(1 <j< m) is the original symbols. The auxiliary
variables t, and g, are the time-stamp and the generation
number, respectively, and h(-) is a one-way hash function
such as SHA-1.

For each edge e emanating from a node v, let y(e) € Z,
denote the symbol carried on e, which can be computed
as a linear combination of the symbols y(e’) carried on
edges e entering node v, namely, y(e) = >, f.(e)y(e).
The coefficients p.(e) form a local encoding vector
B(e) = B, (€)] on edge .

In practical networks, symbols flow sequentially over
the edges, and they are grouped into packets. Correspond-
ing to the source packet B} = [b;,,b;,,...,b},], each packet
in the network can be considered as a vector Y,(e) =
[vi(e),y5(e),...,yr.(e)]. Thus, each packet Y.(e) on edge e
can be computed as a linear combination of the packets
Y.(e’) on the preceding edges or, alternatively, as a linear

combination of the source packets {Bj,B,...,B;} by
induction
n
Yi(e)=) Be(e)Y r(e) = gile)-B
e i=1
n n
= Zgi(e)'bi,lv-”:zgi(e)'bi,m . (1)

The coefficients of this combination form a global encoding
vector G(e) = [g,(e),&,(e),...,8,(e)] on edge e, which can be
computed recursively as G(e) = 3, B (¢, USing the local
encoding vectors B(e). The vector G(e) represents the sym-
bol Y ,(e) in terms of the source symbols {B},B,.....B}.

To facilitate the decoding at the sinks, each packet car-
ried on edge e is appended with its global encoding vector
G(e). This can be achieved by prefixing the ith packet vec-
tor B} with the ith unit vector U; and applying the algebraic
operations to the resulting vector, ie., [Y .(e),G(e)] =
S Be(e)[biY,(€),G(e)] = 31 ,g;(e) - [Bl,U;]. Therefore, the
augmented source packet B{ and corresponding encoded
packet Y. (e) are denoted as

B = B[, U]
= b,,....b,.0,....0,1,0,....0]
m i-1 n—i
= [B{JV"’B;TH’B;TH#»U ""/Bir,mm}v (2)
—_— —

m n

Y. Jiang et al. / Computer Networks 54 (2010) 28-40 31

=Y &(e)-[B.Uj
i=1
= ;(e)v 7yrm(e)7g1()s'“vgn(e)]
=[i(e), . Ym(€). V.1 (), Yn.n()]; 3)

Tagging each packet with the corresponding global encod-
ing vector allows the distributed decoding procedure and
requires no knowledge of encoding functions for the nodes.
Furthermore, once a sink teT receives n packets
Y .(e1),Y +(e2),...,Y r(en), which can be denoted as

Y. (e1) gi(e1) g(e1) - guler) B
Y (en) gi(en) gr(en) gq(en) B,
B
= Gt . cen
B,

where the G(e;) is the global encoding vector associated
with Y ,(e;). Then sink t can recover the n source packets.
The matrix G, is invertible with high probability, if the
coefficients in local encoding vectors are chosen randomly
from Z, with an adequately larger size than that of the net-
work [17,18].

2.2. Adversary model

In the proposed scheme, we assume that a source,
which utilizes the networking systems to provide content
distribution service for multiple sinks, is always trusted
while the forwarders may not be trusted since they may
potentially disrupt the normal coding operation by send-
ing/injecting invalid packets. Therefore, network coding
based applications may be vulnerable to various potential
attacks. Generally, the possible attacks considered in this
paper include Pollution Attacks and Forgery Attacks, which
can further classified into general forgery attacks and ran-
dom forgery attacks.

(1) Pollution attacks: The pollution attack can be
defined as that a malicious intermediate node can
inject junk packets into the network to pollute the
output, and further contaminate the entire down-
stream, preventing proper decoding. Formally, we
describe the pollution attacks as follows. A packet
Y. (e) is a polluted one if the vector Y. (e) is not equal
to the product of the original augmented packet vec-
tor [BY, B}, ..., Bh]and the global encoding vector, i.e.,

m+n n

V0> g@B o Ve Y g,
i=1

=1 =1
(4)

where G(e) = [g;(e),8,(€),...,8,(e)] is the global
encoding vector embedded into packet Y, (e).

(2) Forgery attacks: The attackers can also try to forge
signatures to prevent the intermediate nodes from
detecting the forged packets, which is defined as
general forgery attack. A variant of forgery attack is
random forgery attack, which can be defined as that,
given signatures on a small set of known messages,
the adversary can forge signatures for other possible
messages [38]. In the context of network coding,
random forgery attacks mean that an attacker
attempts to generate valid signatures for arbitrarily
false encoded packets based on the collected signa-
tures for stale encoded packets.

2.3. Identity-based cryptography and bilinear pairing

Identity-based cryptography (IBC) is a type of public-
key cryptography in which the public key of a user is its
unique identity information. The primary IBC schemes in-
clude Boneh et al.’s pairing-based scheme [19], Cocks’s
quadratic-residue based scheme [37], etc. As an important
IBC scheme, the pairing-based IBC scheme can offer lower
transmission cost compared with the traditional RSA-
based schemes due to the smaller signature overhead.
We briefly introduce the bilinear pairing as follows.

Let G and G respectively be a cyclic additive group and
a cyclic multiplicative group generated by P with the same
prime order g, i.e., |G| =|Gy|=q.Leté: G x G — Gy be a
bilinear map, which satisfies the following properties:

(1) Bilinear: VP,Q,Re G and Va,bec 7Z;,é(Q,P+R) =
é(P+R,Q) =é(P,Q) - &(R,Q). Especially, é(aP,bP) =
é(P,bP)" = é(aP,P)" = é(P,P)®.

(2) Non-degenerate: 3P,Q € G such that é(P,Q) # 1g,.

(3) Computable: VP,Q < G, there is an efficient algo-
rithm to calculate é(P, Q).

Such a bilinear map é can be constructed by the modi-
fied Weil [19] or Tate pairings [20] on elliptic curves, on
which the Decisional Diffie-Hellman (DDH) problem is
easy to be solved while the Computational Diffie-Hellman
(CDH) problem is believed hard [21].

3. An efficient dynamic-identity based signature
scheme for network coding

In this section, we propose an efficient dynamic-identity
based signature scheme for network coding, where each
node can rapidly tag/drop packets from pollution attacks
and thwart random forgery attacks.

3.1. Dynamic-identity based signature scheme

The proposed signature scheme is based on identity-
based cryptography [19]. There are three parties in the
system: the forwarders (signer and verifier), the sinks
(verifier), and the source (verifier). The source is responsi-
ble of generating public/private security parameters, and
the public security parameters can be published with the
trusted third party’s signature.

32 Y. Jiang et al. / Computer Networks 54 (2010) 28-40

The basic scheme mainly consists of three algorithms:
setup, sign, and verifying.

Setup: In this phase, the source needs to set up the ba-
sic security parameters and to generate the following pri-
vate/public key pairs, pseudo identity and the resultant
identity-aware signature keys.

(1) Bilinear map parameters: Let G and Gy be a cyclic
additive group and a cyclic multiplicative group,
where G and Gy are generated by P with the same
order q. Let é: G x G — Gy be a bilinear map. H(-)
is a MapToPoint hash [21] function such that
H:{0,1} — G.

(2) The source generates m-+n random numbers
{51,52,...,Smn} € Z as its secret master keys. The
source also derives a temporary pseudo identity
PID from its real identity ID. the source pre-com-
putes the following m + n temporary secret signa-
ture keys:

SK = {SKi|SK; = s;H(PID), 1 < i< m+n}, (5)

where H(-) is a MapToPoint hash [21] function such
asH:{0,1}" — G. Note that, to preserve the privacy
of signature keys SK;, the temporary pseudo identity
PID will be changed, once a source has sent
[(m+n—1)/n]-n linear independent packet vec-
tors. Specially, for the k™ identity refreshment, we
can introduce one-way forward hash chain to up-
date the pseudo identity PID as

PID = h*(ID), (6)

where h(-) is a one-way hash function such that MD5
or SHA-1. With the parameter {ID,k}, a node can
easily verify the authenticity of pseudo identity PID
by checking PID = h*(ID).

(3) The source uses m+n master keys {si,ss,...,
Smin} € Z, to compute the following public keys:

PK = {PK{|PK; = siP, 1 <i<m+n}. (7)

Finally, the source publicizes the security parame-
ters {G, G, q, P, PK,ID} to all nodes.Sign: According
to the network coding model, the source calculates
the signatures for its packets {B,By,... B},
respectively. Let Hs(-) denote the homomorphic sig-
nature function. For E{, the corresponding signa-
tureHs(B!)can be defined as

Hs(B) = {EQJ-SKJ} = Z{B?J-SjH(PID)}- 8)
=1

=1

Then, the source constructs and delivers a packet
{PID, k, B HS(BT)} to the downstream nodes. Simi-
larly, the signature of encoded packet Y.(e) in Eq.
(5) can also be denoted as

Hs(Y(e) =Y {¥/(e)SK;} = Y {7/ (e)s;H(PID)}.
j=1 j=1
9)

For securing network coding, each node needs to ap-
pend signature Hs(r(e)) to its output packet Y, (e).

Due to the homomorphism of the signature function,
it is not required to compute Hs(Y(e)) such as Eq.
(10). For an output packet Y.(e) =[Y .(e),U(e)] =

>i.gi(e) - Bl, its signature can also be calculated

Hy(Y.(e)) = H (igxem:)

= Z <51<, > gi(e)b)

Z<g, <H§bf51<>>
:Zg,»(ems(iz{) (- Eq. (9)). (10)
i=1

Verifying: To efficiently thwart the pollution attacks and

the random forgery attacks, the forwarders or sinks per-

form the following dynamic-identity-based packet verifi-

cation procedure.

Step (1) On receiving the encoded packet {PID,k, Y.(e (e,
Hs(Y.(e))} from an incoming edge ers, the for-
warders or sinks with the parameters {G, G,q,
P,PK,ID} verify the authenticity of both pseudo
identity PID and the corresponding signature by
checking if

PID = h*(ID), (11)
é(Hs(Y,(€)),P) = ((PID) mZMyJ PK> (12)
Eq. (12) holds since
é(Hs(Y.(€)),P)
—é(mzmy("\SK;, P> —e(%y] H(PID),P)
j=1 j=1

y (H(PID), i y;(e/)sjp> —e (H(PID), mi: y;(e/)P1<j> .

=
(13)

The bogus packets are discarded, and the valid packets are
accepted and further used for encoding or decoding. Eq.
(12) indicates that the computation cost to verify a signa-
ture primarily consists of two pairing, m + n point multi-
plications, and one MapToPoint hash operation. The
computation cost of a pairing operation is much higher
than that of a MapToPoint or point multiplication one.

According to the bilinear property of pairing, the verifi-
cation cost in Eq. (12) could also be reduced by pre-compu-
tation optimization as follows:

e(Hs(Y;(€)),P) = || e} (e)H(PID), PK;)

Y. Jiang et al. / Computer Networks 54 (2010) 28-40 33

where §; = eé(H(PID), PK;) is pre-computed and distributed
in advance. Thus the time-consuming pairing operation is
replaced with comparable low-cost exponential operation.

3.2. Batch verification

We can further reduce the computation overhead and
accelerate the verification process of identity-based signa-
tures by using batch verification [22-28], which can verify
all received signatures synchronously instead of
sequentially.

As shown in Fig. 1, all packets entering a node will be
tagged by generations. Each emanated packet is formed
by taking a random linear combination of packets with
the same generation. In the following, we introduce two
forms of batch verification, packet-based batch verification
and generation-based batch verification, to optimize the
performance. The generation-based batch verification is
well suitable for the interleaving generation coding policy
introduced in [35], which can effectively reduce the delay
spread.

Packet-based batch verification: For each outgoing
edge e at a forwarder or sink v, let Y, (e) denote the packet
carried on e. Packet Y (e) can be computed as a linear com-
bination of the packet Y.(¢’) on edges e’ entering a for-
warder, namely, Y.(e)= S oBe(e)Y,(e'). Due to the
homomorphic signature function, the signature of this
new packet tagged with generation r can be obtained as

- Zﬁe/(e)HS(?r(e/)). (15)

Eq. (15) holds since

Hs(Y.(e)) = Hs (Z ﬁe,(eﬁr(e’)>

(o (Saen)
e i=1

- Z <51<j) (ﬁe«e) ig&e’)lﬁj))

-3 pee (S50 Sacen)

:;<ge, (Zg, risxb))
(

plee{gpene)

_Zﬁe’ (e)Hs(Y:(¢)) (- Eq. (12)). (16)

Consider Y,(e) = Yp e ()Y +(€) = [(e),. ... J ,(€)]. the
forwarder or sink can verify the authenticity of the corre-
sponding signatures Hs(Y,(e)) by checking if

m+n

é(Hs(Y,(e)),P) = e(H(PID) ZyJ e)PK;). (17)

The packet-based batch verification equation can be
proved similar to that of Eq. (13).

Let in(v) = {e|out(e) = v} and |in(v)| denote the edge set
and the average number of edges entering a node v, respec-
tively. From the batch verification equation, the computa-
tion cost to verify such |in(v)| signatures is dominantly
comprised of (m+ n+ [in(v)|) point multiplication opera-
tions, one MapToPoint hash operation, and two pairing
operations. Compared to the sequential verification using
Eq. (12), the number of time-consuming pairing operation
is reduced to two from 2l|in(v)|, and the number of point
multiplication operations is reduced to (m+n+ |in(v)|)
from |in(v)|(m + n).

Generation-based batch verification: To further re-
duce the verification cost, each forwarder can aggregate
the multiple packet-based signatures associated to the
same pseudo-identity PID, and then perform the genera-
tion-based batch verification on the aggregated signature.
In our scheme, the aggregate signature is equal to
Z;‘lei, given any k distinct generate-based signatures
sent by the same signer, wq, ®,,...,w. For example, as
shown in Fig. 1, a forwarder receives three types of packets
tagged with generation {u,v,w} during a given period. In-
stead of separately verifying the three emanated packets
denoted by {Y,(e), Y,(e), Y,,(e)}, each forwarder can verify
them in batch as follows, by aggregating these three signa-
tures with same source pseudo-identity PID

é(Hs(Yu(e)) + Hs(Y (e)) + Hs(Y (e)), P)

m+n
- é<H(PID), PBUACERAG) +W(e>>PKJ->7 (18)
=
where {yi(e),y{(e),y/'(e)} is the element in vectors
{Ze’ ﬁe’ (e) Yu(e’), Ze’ ﬁe’ (e) YV (6/), Ze’ ﬁe’ (e) YV (e,)}'

Let ¢ be the number of generations associated to all the
packets entering a node v for a given time window. With-
out loss of generality, assume that each generation-based
aggregate signature include |in(v)| packet-based signatures
embedded in the packets entering the node v. So the com-
putation cost to verify such ¢ generation-based signature
primarily consists of m + n + ¢|in(v)| point multiplication
operations, one MapToPoint hash operation, and two pair-
ing operations. Compared with the sequential verification
in Eq. (12), an attractive result is that the number of
time-consuming pairing operation is reduced to two from
2¢lin(v)|, and the number of point multiplication opera-
tions is reduced to m+ n+ ¢lin(v)| from elin(v)|(m + n).
Thus, the verification delay for a node to verify a large
number of received massages can be dramatically reduced,
which can apparently reduce the packet loss ratio due to
the bottleneck of signature verification.

3.3. M-BAT: multi-level binary authentication tree

If the aggregate signatures pass verification, all the in-
put packets are accepted. Otherwise, one or more packets
should be polluted, and therefore, further verification
should be carried out. Here, we introduce a modified ver-
sion of Binary Authentication Tree (BAT) in [29], called
M-BAT (Multi-level BAT) to find the malicious packets,
which can efficiently address the robustness issues of
aggregate signatures.

34 Y. Jiang et al. / Computer Networks 54 (2010) 28-40

Upper Sub-tree

Fig. 2. Multi-level binary authentication tree (M-BAT).

Our approach is based on the data structure in Fig. 2.
The M-BAT primarily consists of two level sub-trees. The
upper-level tree, called generation-based sub-tree, is used
to aggregate the generation-based signatures associated
to same information source, whereas the lower-level tree,
called packet-based sub-tree, is used to aggregate the pack-
et-based signature associated to same generation.

Without loss of generality, for a given interval, the gen-
erations of the incoming packets at a forwarder are de-
noted as {k,k+1,...,k+b—1}, where b= 2% and the
number of edges e’ entering a forwarder is equal to
a=2". For each edge e emanated from this forwarder,
the packet Y,(e) carried on e, tagged with generation r
(k <r<k+b), can be computed as a linear combination
of the packet Y. (e) on edges e, namely, Y.(e) =
S4B ()Y (e)(k <T < k+b). Then, the lower sub-tree
and the upper sub-tree of an M-BAT can be constructed
as follows, respectively. For the lower sub-tree,

(1) The leaf nodes (r,h,v)(v=0,2,...,.a-1,k<r<
k+b) are associated with the signatures of =
Be, (e)Hs(Y(e})), respectively;

(2) Inner nodes (r,0,0)(k <r < k+b), as the root of
lower sub-tree and the leaf node of upper sub-tree,
are respectively associated to the signatures of
Hs(Y(e))(k <1 < k+b) in Eq. (15), which are calcu-
lated as Hs(Y.(e)) = 3, B« (e)Hs(Y,(¢)). The inner
sub-root (r,0,0) is associated with an aggregate sig-
nature oy o = S ol

(3) The other node (r,1, v)(O <l < h) is associated with
an aggregate signature o, for the leaf nodes of a

sub-tree rooted at (r,l, v), where Uiy = 2002 k1 of =
St B (@Hs(Yr(e) ki =2"" v, and Kk, =2""
(v+1) - 1. The authenticity of the signature o,
can be verified by checking if

ko -
&(oll,, P) = & (Z Be (e)Hs(Y(e))), P)

s

m+n

é((PID) Zyl PK) (19)

where each symbol yie)(1 <i<m+n)is the ele-
ment in vector Z, k ﬁe()Y (e)). Eq. (19) can be
proofed similarly as that of Eq. (13).
On the other hand, the upper sub-tree is used to per-
form generation-based binary verification, it is constructed
as follows:

(1) The leaf node (g,v)(v=r—-kk<r<k+b) is a
counterpart of the root node (r,0,0) of a lower
sub-tree. It is associated with a packet-based aggre-
gate signature f, = Hs(Y,(e)), which is tagged with
generation r (k < r < k+ b);

(2) The root (0, 0) is associated with an aggregate signa-
ture o, Zf"o] B;. Each inner node (I,v) (I<g—-1)
15 assoc1ated with an aggregate signature

Zl i, i in the leaf nodes of the sub-tree
rgoted at (l,v), where f, Z, 1 Bi = Sk 1, Hsx
(Yisr(e)),ky =257 v, and k2 _2g -(v+1)—1. The
authenticity of the aggregate signature f,, can be
verified by checking if

ky _
P) = é(ZHS(YHk(e))vP)

i=ky
m+n
é((PID) Z NAG) (20)

where y!(e) is the element in vector Zl K Yik(e).

Similar to binary-searching algorithm, searchmg a BAT
is a process that recursively verifies the sub-tree dictated
by the current authentication status of aggregate signa-
tures. Consider the first step to verify the aggregate signa-
ture at root node . If the aggregate signature at o, is
genuine, all the signatures in the leaf-nodes are authentic.
Otherwise, it further verifies the aggregate signatures of
the left-child node o, or right nodes g ,, in the same
way, respectively. This binary checking process will be
iteratively carried out in Up-to-Bottom way until all bogus
packets are found.

The performance evaluation of M-BAT is not trivial,
which relies on the number of bogus signatures. According
to the theoretical analysis for identity-based binary batch
verification in [29], the number of time-consuming pairing

Y. Jiang et al. / Computer Networks 54 (2010) 28-40 35

operations to check k signatures with r bogus ones is
approximately equal to 2(r+1)log(k/r) +4k+2 on
average.

4. Security analysis

In this section, we will respectively analyze the hash
collision, signature forging, and pair-wise byzantine at-
tacks, which is generally related to the batch verification.
We assume that the source is always trusted, and the for-
warders may not be trusted.

4.1. Hash collision

To thwart the signature scheme, an adversary may
either generate a hash collision for the signature
Hs(Y.(e)) or may forge a signature which can pass the
verification.

Firstly, we show that even if an adversary is with the
knowledge of SK; (1 <i < m+ n), generating a hash colli-
sion message is still as hard as computing discrete loga-
rithm problem (DLP).

Proposition 1. For m + n distinct points SK; (1 <i<m+n)
on an elliptic curve E/Fq contained in a cyclic subgroup of

prime order q, given a message Y(e)= (5/1()s---,Ymin(€)) €
Fy* ™ with its signature Hs(Y (e)) = > ;27" {¥k(e)SKy}, gener-
atmg a hash-collision message Y'(e) = vie),...,¥mmn(e) €

Fgt" from Y() is equivalent to solve a hard DLP problem,
where Y(e)=Y'(e) and Hs(Y (e)) = Hs(Y'(e)).

Proof. First, consider the case that m 4+ n = 2. Let SK; and
SK; be two distinct points of order q on E/F,. Given a valid
message Y (e) = {y1(e),y2(e)} with its signature HS(Y() =
Y1(e)SKy +32(e)SK,, an adversary attempts to generate a
hash-collision message Y'(e) = {y¥(e),¥,(e)}(Y(e)#Y'(e))
such that y;(e)SK; + y2(e)SK2 = ¥, (e)SK1 + ¥,(e)SK,. This
means (y1(e) — ¥ (e))SK; + (y2(e) — ¥, (e))SK, = 0. Suppose
that y;(e) =y, (e), then (y2(e) — ¥, (e))SK, = 0. Since SKj is
a point of order g, we have (y,(e) —y,(e)) = Omodg, that
is, y2(e) = y5(e) in Fq. This contradicts the assumption that
Y(e)=Y'(e) in [FZ. Furthermore, if we fix y}(e) and define
x =y, (e), the problem becomes to determine x over group
E/Fq such that xSK, = ((31(e) — ¥ (e))SK1 + y.(e)SK>). Evi-
dently, this is a hard DLP problem.

For the case that m+n>2, given a message

Y(e) € I with Hs(Y(e)) = S 1"V(e)SK, the hash-
collision message Y'(e) € F™" should satisfy ¥'(e)=Y (e)
and ' (e)SKy = Z”l"yk()SKy, which also means

' (Fr(e) — ¥, (e))SKy = 0. Similar to the case when
m+n=2, it is easy to proof that in order to satisfy
S (Fk(e) — ¥,,(e))SKy = O, there exist at least two dis-
tinct items in ¥ () and Y/(e). Without loss of generality, let
the two items be j/,-()7Yi(e) and y;(e)7y;(e). Consider that
SK; =s;H(PID) (1 <i< m+n), where secret s; are ran-
domly chosen from Fq, we have

m+n

> {Unle) —Fi(e))s;'siSKj} = 0,

k=1 k#i

(Yi(e) — yi(e))SKi +

where the coefficients ry = s3's, are unknown to the ran-
dom oracle for the hash-collision algorithm. Fixing items
{vi(e)|1 <k <m+n,k=i} and define x = yj(e), the prob-
lem becomes how to determine x over group E/[F, such that
XSK; = (71(€)SKi + ST i((e(e) — 7 (€))s5"5:SK;)), which
is also a hard DLP problem. O

4.2. Signature forging and random forgery attacks

In this sub-section, we will show that forging a signa-
ture is at least as hard as solving the so-called computa-
tional Diffie-Hellman problem on the elliptic curve and
computing discrete logarithms.

Signature forging: A smart adversary may attempt to
derive the identity-aware signature keys SK;(1 <i<
m + n) from the transmitted packets, since each signature
Hg(Y.(e)) is a linear equation with m +n unknown keys
SK;, i.e.,

m+n m+n

Hs(Y,(e) = >_V(e)SK; = 3 (7 (e)sH(PID)).

However, as shown in Eq. (6), since the pseudo identity PID
of a source will be altered as PID = h*(ID) after it sends
[m+n-1)/n]-n linearly independent packets, the
adversary can only collect at most [(m +n — 1)/n] - nlinear
independent packets in term of key SK;(1 <i<m+n).
Thus, it cannot derive the identity-aware signature keys
SK; by solving the [(m+n—1)/n]-n linear independent
equations.

Therefore, as far as a group of signature keys SK; with a
pseudo identity PID are concerned, each signature
Hs(r(€)) = Y {75 (e)SK} can be actually regarded as a

“one-time” identity-based signature. Without the private
key SK; (1 <i< m+n), it is infeasible to forge a valid sig-
nature. Because of the NP-hard computation complexity
problem of Diffie-Hellman in G, it is difficult to derive
the private keys SK,v (1<i<m+n) by using
{PID,H(PID), P} and PK; (1 < i< m+ n). At the same time,
since Hs(Y,(e)) = Z’"*"{yk()SK,} is a Diophantine equa-
tion, with the knowledge of Hs(Y.(e)) and
yi(e) (1 <k <m+n), it is still difficult to get the private
keys SK; (1 < i< m + n). Therefore, forging the “one-time”
signature by attempting to derive SK; is computationally
difficult.

Random forgery attacks: In [38], Johnson et al. con-
clude that “In any additive signature scheme on the lattice
L= (Z/mZ)d, if one can get signature Sig(xy),...,Sig(xq),
where xi,...,xq are a basis for L, then one can succeed at
any random forgery.” Therefore, knowing the signatures
on a basis is useless to forge a message, if computing the
representation of a given message in that basis is hard.

In previous homomorphic signature schemes for net-
work coding [5,12,13,36], the signature keys keep invari-
ant. However, in our scheme the identity-aware signature
keys SK;=sH(PID) (1 <i<m+n), as the basis of a
(m + n)-dimension 51gnature, is dynamically alterable,
since the pseudo identity PID will be altered as
PID = h*(ID) after the source sends |(m +n — 1)/n] - n line-
arly independent packets, as shown in Eq. (6). Therefore, an

36 Y. Jiang et al. / Computer Networks 54 (2010) 28-40

adversary can only collect at most [(m +n —1)/n] - n line-
arly independent signature Hs(Y,(e)) = S/ {y;(e)SK;} in
term of SK;(1 < i < m + n), thus it is difficult to derive the
dynamic signature keys SK; by solving such
[(m+n-1)/n]-n linearly independent equations. In
other words, it is most unlikely for an adversary having sig-
natures on a basis of SK; (1 <i< m+n) to forge a mes-
sage, since it is computationally hard to derive the linear
representation of a given message.

4.3. Pair-wise byzantine attacks

Generally, the batch verification may be exposed to a
specific attack, called the pair-wise byzantine attack [5].
For instance, an adversary with any two correct packets
M; (i=1,2) is easy to create the following two corrupted
packets, M| = M; + ¢ and M, = M, — &. When they are ver-
ified in batch, the verifier will fail to capture the corrupted
packets due to M} + M, = My + M,.

To address such byzantine attack in RSA-based batch
verification, a small exponent test method [23] is intro-
duced by multiplying each message with a random coeffi-
cient, respectively. Similarly, the proposed M-BAT
algorithm addresses this attack by generating each new
encoding vector with random local vectors. Thus, an adver-
sary can only launch a successful pair-wise attack, if it can
create two packets that after being multiplied by random
coefficients will counteract each other, which is very infea-
sible. For example, for a successful pair-wise attack, an
adversary with two correct messages M; (i=1,2) is re-
quired to forge two messages M) and M, satisfying
wi M +w, M, = wiM; + w;M,. However, due to the ran-
domness of coefficients w; and w,, it is very unlikely to
generate such two message M) and M.

4.4. Discussion

As shown in the security analysis, the signatures on a

set of vectors (vq,...,Vy,) can be used to generate a valid
signature on any vectors from the vector space
V =span(vy,...,Vy). Therefore, the proposed schemes

can efficiently thwart pollution attacks by signing linear
subspaces in the sense that a signature ¢ on a subspace V
authenticates exactly those vectors in V.

Unlike polluted packets, an adversary may also arbi-
trarily forge non-innovative packets by launching a special
replay attack, called entropy attack [5]. Such non-
innovative packets preserve the linear algebraic
constraints on the original packets and the appended
encoding vectors. However, these packets with no new
coding information will reduce the decoding opportunities
at sinks and the overall throughput rate. How to efficiently

Table 1
Comparisons of computation overhead.

filter out such non-innovative packets is another important
issue to be explored [36].

5. Performance evaluation

In this section, we evaluate the proposed scheme by
simulation, and compare it with Charles et al.’s scheme
and Yu et al.’s scheme in terms of computation and com-
munication overheads, respectively.

5.1. Computation overhead

We define the computation cost of the primarily crypto-
graphic operations as follows. Let C,. denote the time cost
to perform one modular exponent operation, Cy,, the time
cost to perform a point multiplication over an elliptic
curve, Cpyp the time of a MapToPoint hash operation, and
Cper the time of a pairing operation. We neglect all the triv-
ial operations such as addition operations for the sake of
simplicity.

Table 1 shows the combination of the dominant opera-
tions of the three signature schemes in terms of signing or
verifying an encoded packet, respectively. The proposed
scheme has the optimal computation complexity on aver-
age, considering that the point multiplication over an ellip-
tic curve (160-bits) has a lower cost than modular
exponential operations (1024-bits) with the same security
level. Specifically, when signing a packet, both the pro-
posed scheme and Charles et al.’s scheme need approxi-
mately (m+n)Cpy, while Yu et al’s scheme requires
(m + n + 1)Cpe. To verify a packet, the proposed scheme re-
quires Cpgp + 2Cpar + (M +n)Cppyy and Charles et al’s
scheme needs (m + n)Cpgr + (M + n+ 1)Cpy, Whereas Yu
et al.’s scheme involves (m + n + 2)Cy,. Clearly, the num-
ber of time-consuming pairing operations in the proposed
scheme is remarkably reduced to two from (m + n)Cp,r, due
to the adoption of the identity-based batch verification.

Note that since Yu et al.’s scheme and Charles et al.’s
scheme are not identity-based signature schemes, addi-
tional one C,. or C, operations are required to verify
the public key’s certificate.

Table 2 shows the comparisons of computation com-
plexity in term of different optimized verification policies.
Both the basic verification and pre-computation verifica-
tion have the similar performance. The packet-based batch
verification for authenticating |in(v)| signatures and the
generation-based verification for authenticating ¢lin(v)|
signatures can significantly reduce the verification cost in
term of the normalized verification cost per packet, with
the result of {(m+n+ |in(v)|)Cpu + 2Cper}/lin(v)| and
{(m +n + &in(v)[)Cpu + 2Cpar }/ (€lin(V)]), respectively.

Scheme Signing

Verifying

Yu et al.’s scheme
Charles et al.’s scheme
The proposed basic scheme

(Mm+n+1)Cre
(m + n)CmuI
(m + n)Cmul

(Mm+n+2)Cre
(m+n)Cpar + (M+n+1)Cry
Cmep + 2Cpar + (M 4 n)Cpyy

Y. Jiang et al. / Computer Networks 54 (2010) 28-40 37

Table 2
Computation comparisons of optimized policies.

Optimized policies Verification cost

Normalized cost per packet

Basic verification
PRE verification
PB verification

GB verification

char + (m + n)Cmul
Cpar + (M +n)Cppe
(m +n+ |in(v)|>cmul + char

(m +n+ Eli”(v)‘)cmul + chur

2Cpar + (M +n)Cry

Cpar + (M +n)Crpe

(mAn4[in(v)) Cot +2Cpar
[in()[

(m+n-+elin(v)|) Cnyi+2Cpar
glin(v)|

Note: (1) PRE: Pre-computation verification with one signature; (2) PB: Packet-Based verification with |in(v)|signatures; (3) GB: Generation-Based verifi-

cation with g|in(v)| signatures.

Note that the number of MapToPoint hash operations
H(PID) is only one, so it is ignored in Table 2.

Packet verification is the primary workload of nodes
(forwarders or sinks). Efficient verification approaches
can eliminate the performance bottleneck and be helpful
to achieve the optimal rate when a source sends packets.
To compare the verification cost of the three schemes, we
first give the benchmarks of the primitive cryptographic
operations on Intel Core™ 2 Duo 1.83 GHz Linux machine:
Crut = 0.75 mS,Crp = 1.18 ms,Cper = 2.75ms, and Cpe =
0.83 ms. We also implement a super-singular curve of
embedded degree k=6 over Fy» with C program. The
choice of the elliptic curve can certainly influence the over-
all computation cost of the proposed scheme. For example,
Barreto et al. [30] reduce the cost of generating a BLS sig-
nature [21] on a super-singular curve of embedded degree
k = 6 over F,e7, whereas the BLS scheme uses a super-sin-
gular curve y* = x3 + 2x &+ 1 over F, where [is a positive
exponent.

Fig. 3 shows the relationship between the verification
cost and the number of symbols per packet (m = 2n).
The verification cost of different schemes approximately

increases linearly along with the growth of the number
of symbols per packet. The verification cost of Charles
et al.’s scheme is always the largest. The verification cost
of the Zhu et al.’s scheme is close to that of the basic ver-
ification scheme, while the verification cost of the two
optimized methods (the packet-based or generation-
based batch verification) is much faster than the other
two schemes. Evidently, the packet-based or generation-
based batch verification can significantly reduce the veri-
fication delay in term of normalized verification cost. In
Fig. 3, we only show the verification cost for ¢ =2 and
lin(v)] = 2. As shown in Table 2, the normalized verification
cost is approximately inverse proportional to
value|in(v)| or &. Hence, the proposed scheme effectively
eliminates the computation workload at each forwarder,
and can achieve the lower packet loss ratio when the net-
work traffic load increases, due to the identity-based
batch verification.

In adverse scenario with bogus packets, the batch veri-
fication is disabled. We can adopt the M-BAT algorithm to
address the robustness issue. The performance of BAT has
been discussed in [29].

Verifying Cost v.s. The Number of Codewords per Message

1800 ‘

[7 |

[|

1600H Basic Verification
Zhu et al.'s Scheme
—— Charles et al's Scheme

1400 H Normalized PRE Verification
—— Normalized PB Verification(lin(v)I=2) /

— 1200 H Normalized GB Verification(e=2, lin(v)l=2) e
%2
\E/ //
‘@ 1000
o
8 / Wl
()]
£ 800
£ /
S
>

600 /
400]

/

-
o
/

200 /é
/;

0

0 100 200 300

400 500 600 700

The Number of Codewords per Message

Fig. 3. Verification cost vs. number of codes per encoded message (m = 2n).

38 Y. Jiang et al. / Computer Networks 54 (2010) 28-40

Table 3
Comparisons of transmission overhead per packet.

Yu et al.’s scheme Charles et al.’s scheme The proposed scheme

(128 +675) bytes (22 +125) bytes (44 + 22) bytes

5.2. Communication overhead

Communication overhead contains a signature and a cer-
tificate appended to the original packet, while the packet
itself is not considered. Table 3 shows the comparison of
the three schemes in terms of communication overhead.
Yu et al.’s scheme can be considered as a RSA-based signa-
ture, and the size of its signature is 128 bytes. The signa-
ture of the proposed signature scheme and Charles
et al.’s scheme is similar to that of a BLS-based aggregate
signature scheme. Since the size of signature in BLS scheme
[21] is equal to that of the ECDSA signature of IEEE1069.2
[31], the size of a signature in the proposed scheme and
Charles et al.’s scheme is equal to that of the ECDSA, or
22 bytes.

In addition, we should take the certificate into consider-
ation, which incurs extra communication overhead. In
Charles et al.’s scheme or Yu et al.’s scheme, a certificate
must be transmitted along with the signature. If we adopt
the certificate in IEEE 1609.2 Standard [31], which has 125
bytes in length, the total transmission overhead of Charles
et al.’s scheme is 22 + 125 bytes, as shown in Table 3. Yu
et al.’s scheme also has to incorporate a certificate in the
packet, which is 675 bytes long in the case of using RSA
certificate according to X.509-v3 Standard [32]. The total
transmission overhead of Yu et al.’s scheme is 128 + 675
bytes. In contrast, the proposed scheme does not need
any certificate due to the adoption of identity-based cryp-
tography; instead, only a 44 bytes short-length identity is
sent, i.e., [PID| = |ID;|+ |ID,| =44 bytes. Thus, the total
transmission cost of the proposed scheme is 44 + 22 bytes.

6. Related works

Security issue in network coding has attracted increas-
ing attentions recently. To secure network coding against
pollution attacks, several efficient solutions have been ap-
peared, which can be primarily divided into two categories
from the view of cryptography.

In [14], Ho et al. propose a non-cryptography-based
scheme on how distributed randomized network coding
can be extended to detect Byzantine modification attacks
without the use of cryptographic functions. For the
scheme, a computation-efficient hash value is embedded
into each packet. The sinks can use the hashes to detect
integrity of the corresponding packets and with high prob-
ability, when there are Byzantine attacks. However, the
sinks cannot recover the source packets correctly, even
though the polluted packets have been detected. In [15],
Jaggi et al. introduce an information-theoretically secure
network coding, which can efficiently tolerate the presence
of Byzantine adversaries. The basic idea is to embed extra
parity information into the source packets so that the sinks
can use such information to recover the source packets

when suffering Byzantine attacks. To achieve optimal rate,
Jaggi et al. present several polynomial-time algorithms,
which can efficiently target adversaries with different
attacking capabilities even without any knowledge of the
topology. However, similar to Ho’s scheme, Jaggi’s scheme
can only allow the sinks, instead of the forwarders, to
detect Byzantine attacks. Since it cannot drop the junk
packets en-route, the scheme is unsuitable for resource-
constrained networks. Following Jaggi et al. scheme, Wang
et al. [33] introduce a broadcast-mode transformation for
network coding, which efficiently impedes the influence
of potential adversaries by limiting them to a single trans-
mission opportunity per generation. With a sufficient
diversity of internally-disjoint paths from source to sink(s),
the multicast capacity may not be greatly affected by this
transformation. In addition, combined with error-control
coding, this approach may be effective in dealing with
adversaries, particularly in such application scenarios,
where cost-prohibitive approaches may be infeasible.

Cryptography-based schemes primarily include homo-
morphic hash scheme [5,34,36], homomorphic signature
scheme [12,13], and secure random checksum scheme
[5]. All of these techniques try to detect a polluted packet
before it gets mixed into the buffer of forwarders. In [34],
Krohn et al. present a practical security scheme for peer-
to-peer content distribution by using homomorphic hash-
ing function, which enables a downloader to efficiently
perform on-the-fly verification of erasure-encoded blocks,
where each block is linear combination of original file
blocks. Gkantsidis et al. [5] extend Krohn et al.’s approach
and present a homomorphic hashing scheme for securing
peer-to-peer file distribution via network coding against
pollution attacks. The scheme remarkably reduces the cost
of verifying blocks on-the-fly while efficiently preventing
the propagation of malicious blocks. Due to the homomor